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Problems on the determination of symmetric temperature fields for both a 
solid and hollow Isotropic cylinder and sphere under different initial and 
boundary conditions have been examined In a number of works ([l and 23, etc.). 

Of considerable interest is the determination of nonaxisymrnetric nonsta- 
tionary temperature fields for an Isotropic and orthotropic hollow cylinder 
and sphere under various boundary conditions corresponding to the heat ex- 
change on the outer and Inner surfaces. 

In solving these problems, the desired temperature functions may be repre- 
sented as series (trigonometric series along the generator and directrlx in 
the cylinder case; trigonometric series along the parallels and Legendre 
polynomials along the meridian in the sphere case). 

Then, If the Laplace transform is used, finding the transforms of the 
expansion coefficients may be reduced to integration of the auxiliary Bessel 
equation. After having Integrated this auxiliary equation by application of 
inversion theorems for the Laplace transform (taking into account the trans- 
formed boundary conditions), the expansion coefficients can be determined, 
and then the desired temperature function as well. 

When the boundary conditions on the surfaces of an orthotropic hollow 
cylinder or sphere are given In the form of linear combinations of the tem- 
perature function and its first derivative with respect to the normal to the 
surface, it is necessary to determine and Investigate the roots of the trans- 
cendental equation 

[e,J, (z) - b&,+1 (s)l [a$‘, (1’4 - b,wN,+, b41- 

- i”zJ, WI - b#zJ,,l W)l [+‘v ix) - bIxN,+l (x)1= 0 (W>P>1* y>O) (0.1) 
in order to utilize theorems to evaluate the contour integrals and to prove 
the final results. 

McMahon [3], Sasakl c4], Carslaw [5], Llpow and Zwlck [6], etc. considered 
particular cases of this equation (for V- 0 and a,= s2= 0 or b,= b?= 0, 
for v-0 etcJ The results of [3] are used below to evaluate 
and investigat~2~h~ ioots of Equation (0.1). 

1. Let us examine (0.1) in the case when b,b + 0 Following MoMahon, 
let us utilize asymptotic expansions of the Desse f funl\tlons C71 
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a,J, (z) - b,dv+l (z) = - R, Yr21 xz sin (z - SY / 2 - A / p - et) 

aIN., (2) - b,xN,+, (2) = Ii, t’2 j at= eos (z - xv J 2 - n / 4 - t&) 

a2Jv (IL%) - ~@xJ~+~ (F) = - R, 1/2 I JW sin (pz - JCV / 2 - n / 4 - 0,) 

azNv (p) - b,p~iV~.+~ (~2) = R, If2 I JCW cos (px - nv I2 - IS / 4 -- 0,) 

to determine the roots of the transcendental equation (0.1). 

Here 

R1 co5 0, 
n (-1p 1 

=&x+ 2 -- r (v + 2k + Vd bl 
k_-O (2,)ak+l(2k + I)! r (v - 2k - ‘/a) ‘I1 - 4(k x 

X (v $2k + ;) (v + 2k + $1 

(1-l) 

(1.2) 

0.3) 

and we obtain the values of R2cos @a and R,sin q2 from (1.3) by replacine 
(z, by a,, b, by ba, 3 by p.~ therein. 

Inserting (1.1) and (1.2) into the original equation (O.l), we obtain [31 

sin [3& - 1) - e,- 011 = 0, for 2 Q.L - 1) - es+ I&= sn (1.4) 

From (1.3) the values of tan g1 and tan e2 may be represented as 

tonh= tan 02 = 
Here (*> 

0.5) 

Al =83- 4 (v + +) (v + $)9 A.=-64$+;;;[? -$(v+$) X 

+ ~ r (v + */d r (v + %) 
r (v - ‘Is) I‘ tv - %) ( 

(v + 72) (v + %) a1 (v + %I fv + ‘la) 
&I 4 )( i- 6 )+ 

* * ..*..,....... f.... e............ .* 
*) It IS not possible to obtain a general expression for ,J~*+~ 
are presented only for the first three coefficients Al, A 
mlnation of the value of each succeeding coefficient from 
ficult in principle, however, 
ciated with It. 

there are extremely tedious calculations asso- 
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We obtain the values of R~ by replacing a,/b, by a&, In the expres- 
sions for the A, . 

Raving the values of tan e1 and tan e2, we determine the angles er and 
B* by means of Formulaa 

to ‘ 
Bj= ~ (-l)k ~ (,gj)ak+l 

k-0 

Inserting (1.6) into (1.4) we obtain 

whose inversion by utlllzlng a Lagrange series C83 will yield the final value 
of the root x, of the original equation (0.1) 

Omitting analogous computations, let us note that for b,= b,= 0 we 
should take Aek+l=Bak+l== cBk+r in (1.7), where 

c 
b 

*28 r (v + “‘/2) _ 

15 r(V_s/2) +~(Y-l/S(Y+1/8)FI::I~~))+ 

f (v + VA 

+%(V [ 

1 r (v + ‘/a) r (y + J/2) 

-. 3i2) 7 r (v _ 5j2) - (y - ‘id (y + “12) r (v _ y2) I 
. . . . * .I....................... 

Replacing 8 In (1.7) by 8 + !J and the coefficients AIE+l or &, +1 
by G,+, s we obtaln formulas to evaluate the roots .-ST, of the original 
equation (0.1) for the b, - 0 , a,# 0 or b,# 0 , b,= 0 cases, respec- 
tively. 

Let us note that for certain values of the parameters Formula (1.7) may 
turn out to be unsuitable for the evaluation of the first few roots. In 
these cases the first roots should be determined either from prepared tables 
or by the numerical solution of the specific equation. This circumstance is 
without value in the investigation of the asymptotic behavior of the roots 
of the original equation (0.1). 

21. In the case of a finite value of v It follows from (1.7) that the 
roots x. of the orlglnal equation (O.l).tend to lnflnlty, a# 8 tends to 
infinity, at least as rapidly as ma , where m # 0 . 

It also follows from (1.7) that the original equation (0.1) has a nOnde- 
numerable set of real roots for real values of the parameters v, ax, aa, b,, 
b *I u * 

Let us Investigate their behavior 8s the index v increases without llmlt. 

Taking into account that the function on the left-hand side of (0.1) 1s 
even, we can, without Ilmlting the generality of the results, consider only 
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positive roots (x,> 0). 

It Is known [7]that In the asymptotic expansion of Bessel functions with 
large indices It Is necessary to examine separately the case when the argu- 
ment Is less than the Index (W/V = Q , where 0 i P < 1) , greater than the 
Index, and equals the Index. 

We represent the Bessel functions for large values of the Index (when the 
argument Is less than the Index but greater than zero) by utilizing the 
acymptotlc formulas [73 

For Bessel functions with index v + 1 we shall use the notation 

cmha' = (v + 1) / z,oah/3' = (v + 1) lpz. 

Let us note that only positive values of Q, 8, a', 8' are subject to 
examination; hence a-p >O, al-a >O, f3' -p >O. 

Let us show that (0.1) has no roots n,s 0 for which q tends to zero 
as the Index v grows without limit. 

For definiteness, let us assume that none of the coefficients of Equation 
(0.1) 1s z',;-xw,(~"~,~,O; i&=0; aj#O, b,#O). Cases when one of these coeffl- 
clents Is 

a_-e 
n principle, from the case under conslderatim. 

Cases when two coefficients simultaneously zero are either meaningless 
(the cases al= b,= 0 or a,= b,= 0 say) or reduce the equation under con- 
clderatlon to equations Investigated in [3 to 61. 

Utilizing the asymptotic formulas presented above for the Bessel functions, 
we represent the fundamental equation (0.1) as 

v-&{exp [-v (a - fi + u’ - p --tpnhu +td@ *a’ +td@) - (a’ -fuLhu’)] - 

- exp [- ~(a'- a --tmha'+t~~~~u) -(~'-a')]} - 

- V(1~~~~,~p{exp[-2v(u'-~--unsu'+t4$)-2(u'-~u')]-l1)- 

a1bzFLz e - T/(i+v)UPha~p.~expI--(~-~++'-~~~+~[j)-~'+~~~)- 

- (a’ - P’-tiu’+mhp’)]-exp[-v(u’-u++-f3-mhu’+tiu- 

-t=w +MP) - (u’ + p’ -tmhu’ -~F)l) + (1 + vy;~u,up (exp [- v(3u'- p'- 

-2~-tmh~+tulhpl- 2lAahu'+2t&3)-(3u'-~'-3tWlba'+rIhpl)]- 
-exp[-v(~-2~+u'~~--uahu'+2tmhp)-2(u'--unhu')]}=O 

Hence, taking account of the limit relationships for v - - and q-0 
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Iim a' z iimp = 00, lim (a' - fi') I" lim (a' - @) = 111 p 

lim ]Y (a' - a)] = lim [v (fi' - fl)l = 1, 

limma = limturbct'= lime&$ = Emtip = 1 

lim [v (a - fi)] = lim [Y (a - b')] =: 00 

we obtain a2blx,= 0 , which contradicts the original assumptions 
b,# o , x.' o . 

a,# 0 f 
The obtained contradiction permits the assertion that there 

are no roots among those considered for which q will tend to zero as v 
grows without limit. 

Thus, even without examining the remaining two cases (when the argument 
of the Bessel functions 1s greater than or equal to the index), it can be 
considered proven that as v grows without limit the nonzero roots x, of 
the original equation (0.1) grow at least as rapidly as mv , where m # 0. 
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