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Problems on the determination of symmetric temperature fields for both a
s0lld and hollow isotropic cylinder and sphere under different initial and
boundary conditions have been examined in a number of works ([1 and 2], etc.).

Of considerable interest is the determination of nonaxisymmetric nonsta-
tionary temperature flelds for an isotropic and orthotropic hollow cylinder
and sphere under various boundary conditions corresponding to the heat ex-
change on the outer and inner surfaces.

In solving these problems, the desired temperature functions may be repre-
sented as series (trigonometric series along the generator and directrix in
the cylinder case; trigonometric seriles along the parallels and Legendre
polynomials along the meridian in the sphere case).

Then, if the Laplace transform 1s used, finding the transforms of the
expansion coefficients may be reduced to integration of the auxillary Bessel
equation. After having integrated this auxlliary equation by application of
inversion theorems for the Laplace transform (taking into account the trans-
formed boundary conditions), the expansion coefficients can be determined,
and then the desired temperature function as well.

When the boundary conditions on the surfaces of an orthotropic hollow
cylinder or sphere are given in the form of linear combinations of the tem-
perature functlion and its first derivative with respect to the normal to the
surface, it 1s necessary to determlne and investigate the roots of the trans-
cendental equation

[al‘]v (:L‘) - blx‘]v+1 (x)] [a‘),Nv (p'x) - bzl"wa,l (W")] -
— [ay], () — bppad o (B2)] {oy NV, (@) — byaN, , (2)] =0  (co>p>1, v2>0) (0.1)
in order to utilize theorems to evaluate the contour integrals and to prove

the final results.

McMahon [ 3], Sasaki [4], Carslaw [5], Lipow and Zwick [6], etc. considered
particular cases of this equation (for v=0 and @,=a,= 0 or b = b,=0,
for v=0, a,= 0, etc). The results of [3] are used below to evaluate
and investigate the roots of Equation (0.1).

1. Let us examine (0.1) in the case when D,?,£ O . Followlng McMahon,
let us utillze asymptotlic expanslons of the Bessei functions [7]
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0, J () —bzJ,  (z)=—R, V2] nzsin(z—av/2—~n]{— 8,)

e (1.4)
aN, (x)—bzN  (©)=R, V2/nzcos(z —~nv/2—n/4— N
a7, (bz) — byl (pz) = — R, V2] apz sin (wx — v /2 — 1t/ 4 — 0,) .
N .2
ayV, (ux) — bopaN, , (p2) = R, V2/Jtp.a: CO8 (UT NIV [2 — 10/ 4 e 8,) (-2)
to determine the roots of the transcendental equation (0.1).
Here n .
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and we obtain the values of F,cos 8, and R,sin 4, from {1.3) by replacing
a; by 6., b, by P, x by ux therein.

Inserting {1.1) and (1.2) into the original equation (0.1), we obtain [3]
sin [z —1)—0,—01=0, for z{p—1)—0;+ 0, =sn (1.4)
Prom (1.3) the values of tan ¢, and tan g, may be represented as

. oo 1 I 1
anl = A —— tan 0, = szﬂm (1.5)
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+ 2048

3 T(v=—9p\ b 2 by
r(v+%)]2 @ (vAYa) (v +3h) ( o (v (v 5a)
+ae[rotay| (- ) (i - R
*} It is not possible to obtain a general expression for 4,,,, . Values

are presented only for the first three coefficients Ay, A3, Ag . The deter=-
mination of the value of each succeeding coefficient from ?1.33 i1s not dif-

ficult in principle, however, there are extremely tedious calculations asso-
clated with 1it.
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We obtaln the values of B, by replacing ¢,/b, by a,/P, in the expres-
slons for the 4, .

Having the values of tan 8, and tan §,, we determine the angles 4, and
Az by means of Formulas

[2 2]
¢ 4 K
0= ) (1) groq (wa 0™
k=0
or
i As 1 Ay 1
b= o+ (o= ) + (s 0o + 5 i+
i Bls 1 Bl5 1
o= Brgz + (B 5 ) gy + (B BoB+ ) gm0 (09
Inserting (1.6) into (1.4) we obtain
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714
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+5Bs — 5B1*By + B8 — ub (545 — 54,243 - A15) 1
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whose inversion by utilizing a Lagrange series [8] wlll yield the final value
of the root x, of the original equation (0.1)

By —pAd — 1
+ 18»:& -+ 3 ?8;!.:;8)3 [(n —1)(3Bs — B® — 3p®ds + APp?) —  (L.7)
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— pBAS) — 160 (0 — 1Y By— pA)) (3Bs— By® — 3p°ds -+ Ar*p?) + 19200 (Br — p AP }H-- -+

Omitting analogous computations, let us note that for b = D= O we
should take Ay, = Bgy,y =Cqyp 1in (1.7), where

81t
xa=u__~i

32 T(v7 b
€1 — & (v — Vo) (v -+ V), Cs:_:f_F—Eg——g’;,—g—BZ(vuliz){V+llz)H;
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Replacing & in (1.7) by 8 + % and the coefficients A,y4y OF FBaysr
DY (axey s We obtaln formulas to evaluate the roots x, of the originai
equation {0.1) for the &, = 0, 2,#0 or 5 # 0, b,=0C cases, respec-
tively.

Let us note that for certain values of the parameters Formula (1.7) may
turn out to be unsuitable for the evaluation of the first few roots. In
these cases the first roots should be determined either from prepared tables
or by the numerical solution of the specific equation. This clrcumstance is
without value in the investigation of the asymptotic behavior of the roots
of the original equation (0.1).

2. In the case of a finite value of y 1t follows from (1.7) that the
roots x, of the original equation (0.1).tend to infinity, ag & tends to
infinity, at least as rapidly as ms , where m # O .

It also follows from (1.7) that the original equation (C.1) has a nonde-
numerable set of real roots for real values of the parameters v, 8, @5, D,
ba: [

Let us investigate their behavior as the index v increases without 1imit.

Taking into account that the function on the left-hand side of {0.1) 1s
even, we can, without limiting the generality of the results, consider only
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positive roots {(x,> 0).

It is known [7])that 1in the asymptotlic expansion of Bessel functions with
larre indices it 1s necessary to examine separately the case when the argu-
ment 1z less than the index (ux/v =¢ , where O s ¢ < 1) , greater than the
Index, and equals the 1ndex.

We represent the Bessel functions for large values of the index (when the
arrument 1s less than the index but greater than zero) by utilizing the
asymptotic formulas [7]

e—v(a—unln) 1 1 5 .
J"(m)zﬁ"'—_][i'i"v—(?”ma“ﬁ”‘h a)+

2 gv(o-tanha) 1 /1 5
N, (x)= -Ve—_[1—7(—§-coma—74—eom"a)+---]

V wvtanha
Jv(ux)=»ﬁ:2%[i+ (5 comB— g oot B)+ -
Num=%’[i—%(%mﬂ—%wa)+ -
o=, cowf=

For Bessel functions with index v + 1 we shall use the notation
coshe’ = (v + 1)/ z, coshf’ = (v + 1) / pz.
Let us note that only positive values of o, B, a’, B’ are subject to
examination; hence g — p >0,a —a >0, 5' — [;} > 0.

Let us show that (0.1) has no roots x,> 0 for which ¢ tends to zero
as the index v grows without limit.

For definiteness, let us assume that none of the coefficients of Equation
(0.1) 1s zero (a; %0, b, <0, ag=550, by=5k0). Cases when one of these coeffi-
clents is zero do not difi‘er. in principle, from the case under consideratim.
Cases when two coefficlents are simultaneously zero are either meaningless

(the cases g,= b= 0 or a,= b,= 0, say) or reduce the equation under con-
slderation to equations investigated in [3 to 6]

Utilizing the asymptotic formulas presented above for the Bessel functilons,
we represent the fundamental equation (0.1) as

i ! tanh3 —tanh’ —tanhf3) — (o' —tanha’)} —
Vm{eXp[—V(a—B+a—B—unha+ +
— exp [— v (¢’ — a —tanha’ }-tanhat) — (@" —tanha’)]} —

_ ashiz Vv
V (14 v)tansa'tanhB
_ albgp,:c V_‘V , - - , _

R w——c {exp[— v(2 — B’ + o’ — 3 ~—tanh0 |tanhB’ -—tanhat’ -{-tanhf3)
— (o' — B’ —tanh@’ +1anhf}’)] — exp [— v (@' — a 4 ' — B —tanhat’ -}-tanhot —
, , . , , blbgp,:r%

— 2B —tanha’ ~}-tanh3’ — 2tanha’ + 2tantB) — (30" — R* — 3tanba’ ~anhf3’)] —
— exp [— v (B’ — 2B + o’ —tanh’ —tanhct’ | 2tanhf3) — 2 (0’ —tanht’)]} =0

{exp [— 2v (&’ — B —tanha’ +tanhf3) — 2 (0’ —tanha')] — 1} —

{exp [— v (3’ — B —

Hence, taking account of the limit relationships for v -« and ¢ - O
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lima' = lim§’ = oo, lim (@’ — B) = lim{@ —P) = lnp
lim [v (@ — a)] = lim [v({# — P)] =1,
limtanho = liMtaohto' = limtnhf = limewaanf’ = 1

lim [v (@ — B)] = lim [v (@ — B')] = oo
we obtain a,b,x,= O , which contradicts the original assumptions a.# O ,
by# 0, x,> 0. The obtained contradiction permits the assertion that there
are no roots among those considered for which ¢ will tend to zero as v
grows without 1imit.

Thus, even without examining the remaining two cases (when the argument

of the Bessel functions is greater than or equal to the index), 1t can be

considered proven that as v grows without 1imit the nonzero roots x, of
the original equation (0.1) grow at least as rapidly as mv , where m # O.
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